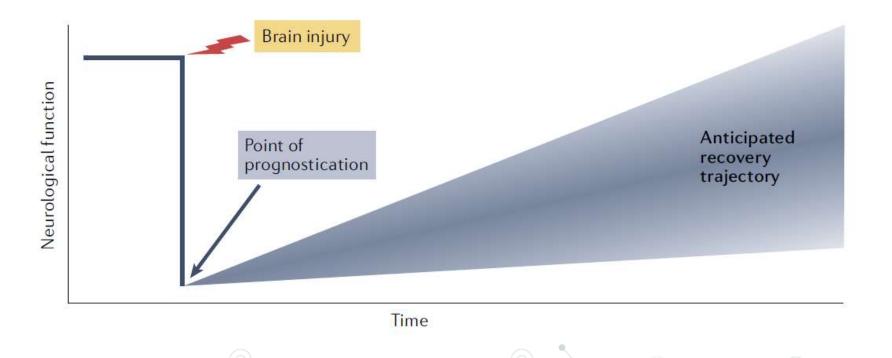
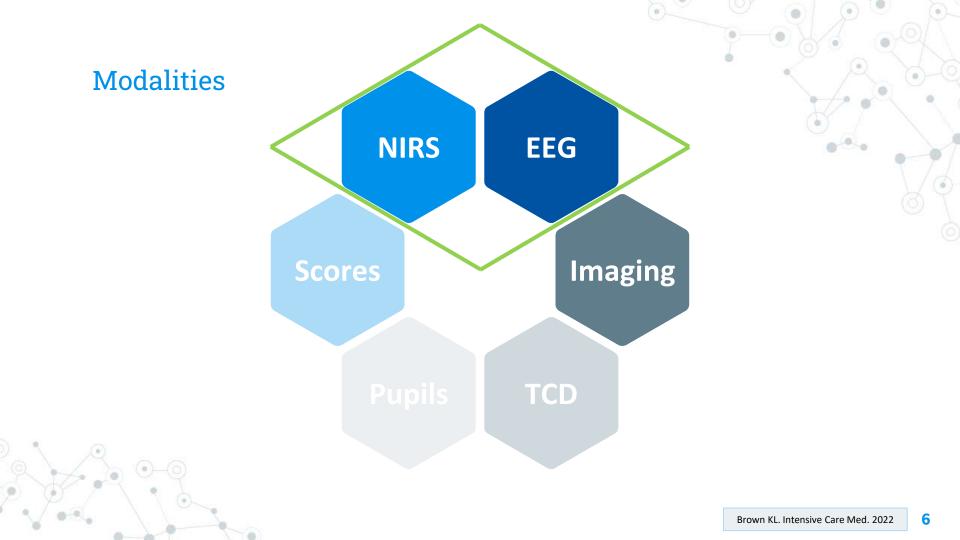

# Neuromonitoring in the PICU

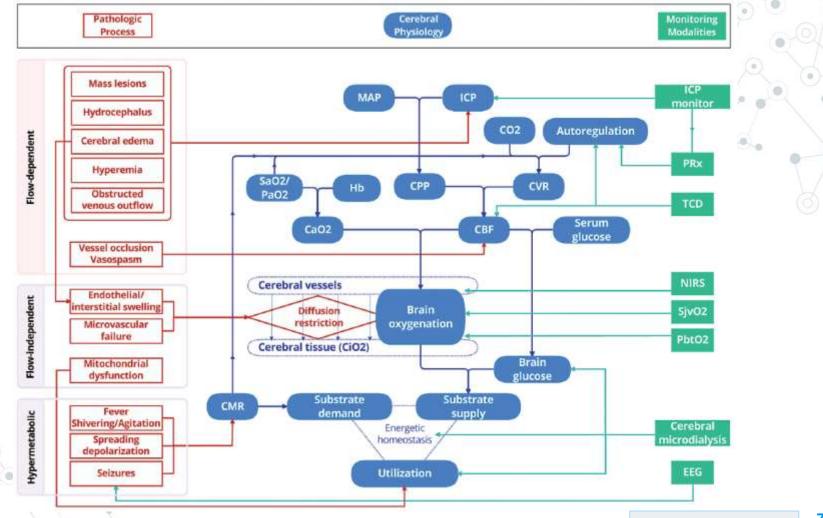
What do we mean by Neuromonitoring?


### What do we mean by neuromonitoring?






## What does this **mean** for my child?


### Prognostication



5

•





0

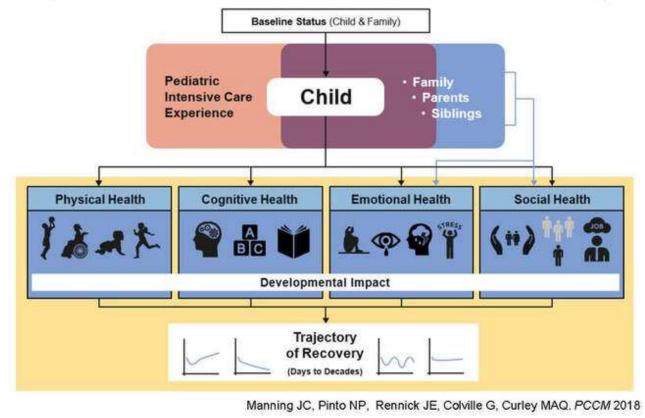
ä,

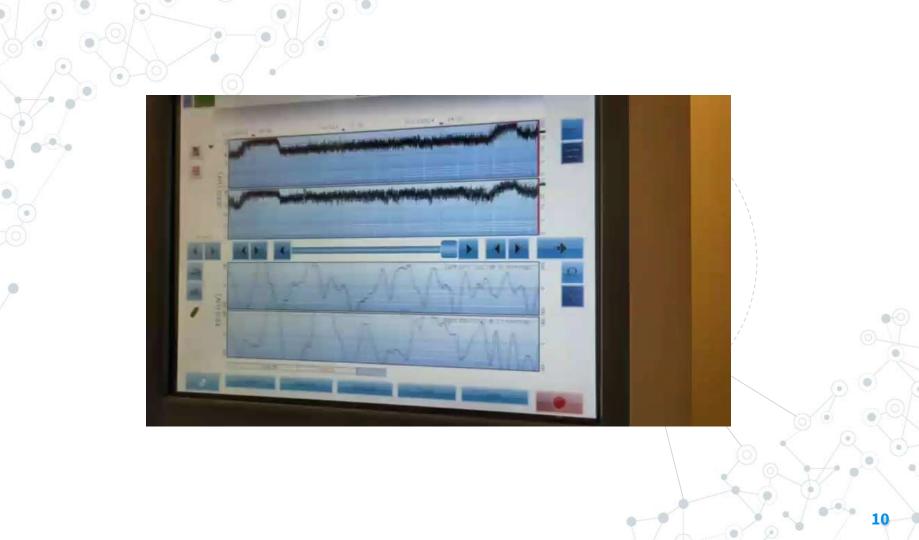
0 0.

Plante V et al. Semin Neurol. 2024

7

0





# PICS-p

## Post-intensive Care Syndrome



### **Conceptual Framework for Pediatric PICS (PICS-p)**





### Electrophysiology

#### **Continuous EEG**

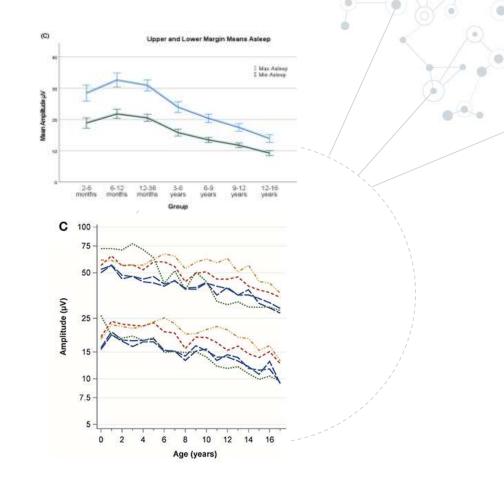
Pros: noninvasive, continuous, focal and global assessment

Cons: resource-intensive, retrospective interpretation (diagnosis delay), affected by sedation, prone to artifacts

Detecting electrographic seizures Monitoring barbiturate coma Background assessment for cerebral dysfunction

#### **Quantitative EEG**

Pros: utilizes existing equipment, brief training, bedside real-time analysis, noninvasive, continuous


Cons: limited pediatric data, lower sensitivity/specificity than cEEG for seizure (requires confirmation with cEEG)

Neonates

### aEEG

### Reference Values?

MacDarby ActaPaed 2022 Greve FrontNeurol 2022 – Location!



### Role of anesthetics and sedative drugs

- Drug-induced patterns of oscillation -> Visible in raw EEG
- frequency changes hard to discern ->
   Spectrogram





# Multimodal Neuromonitoring

Combining Systematic and Neurologic Variables

# Cases

## Neuromonitoring in the Clinical Context

# 1 in 6

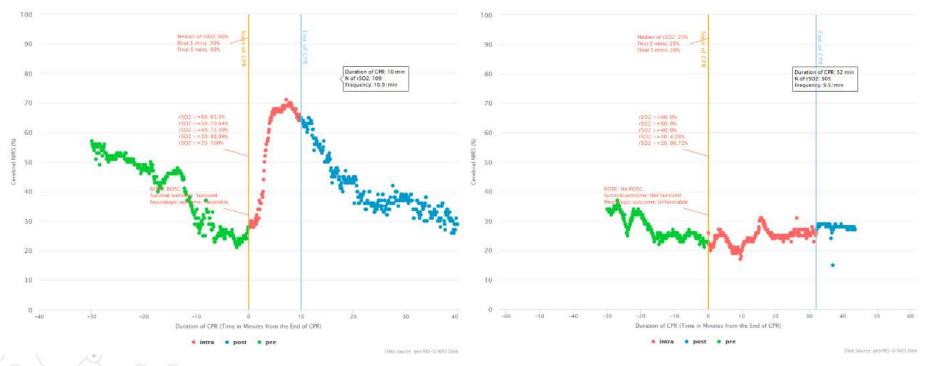


## PICU admissions worldwide attributable to acute brain disorder

# **Resuscitation**

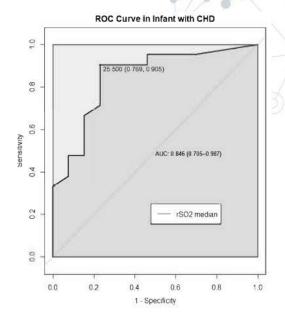


Cerebral Oximetry during resuscitation / Benefits


- Already monitored
- Low-flow -> pulse oximetry might not work
- Pathophysiologic rationale
- O Adult data [Huppert et al 2022]

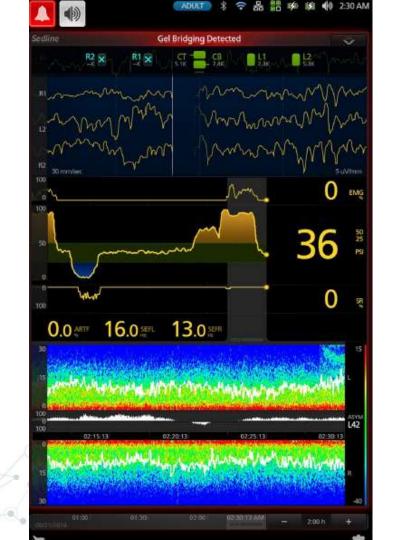
Prospective observational trial / IHCA

- Higher rSO2 → higher ROSC
- Cutoffs? Esp. Epochs above 50%
- $\bigcirc$   $\rightarrow$  no higher survival to d/c




### Prospective observational trial / IHCA / PediRes-O




### Prospective observational trial / IHCA / PediRes-Q

| median crSo2     | ROSC         | No ROSC      |
|------------------|--------------|--------------|
| entire CPR event | 44% [30–60%] | 26% [15–40%] |
| first 5 minutes  | 42% [28–58%] | 29% [17–42%] |
| final 5 minutes  | 44% [32–62%] | 30% [16–45%] |



All patients who survived to hospital discharge had a crSo2 above 30% throughout the CPR event

Raymond TT. CCM. 2024 22

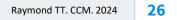


Combining Cerebral Oxygenation and EEG monitoring

# **Resuscitation / Cerebral Oxygenation**

- Correlates with ROSC
- Single measurement ok
- Cut off point?






### **Phases during Post-Resuscitation** Disposition 72 hrs 20 min 6-12 hrs Rehabilitation Early Intermediate Recovery Rehabilitation Limit ongoing injury and organ support Prognostication

ROSC

mmediate

Prevent Recurrence



### **Post-Resuscitation Care**

### All children



#### Hypotension



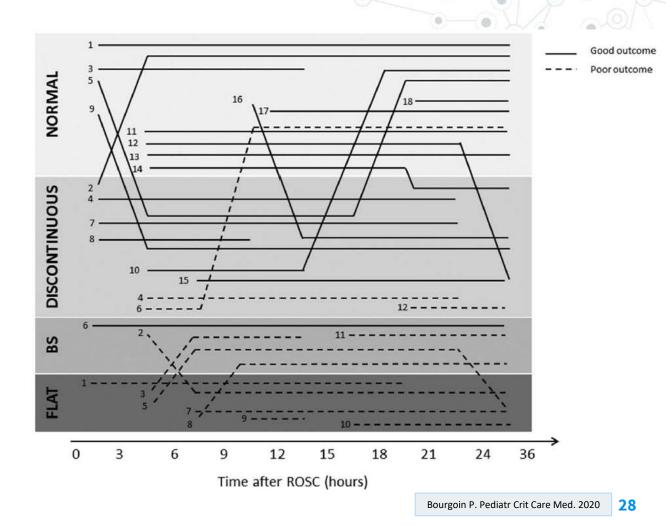
Hypercapnia and hypocapnia

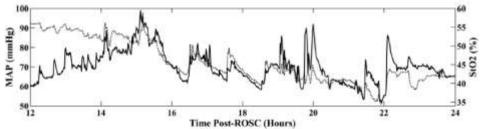


Hyperoxia and hypoxia

### Children in coma




Targeted temperature management




**Continuous EEG monitoring** 

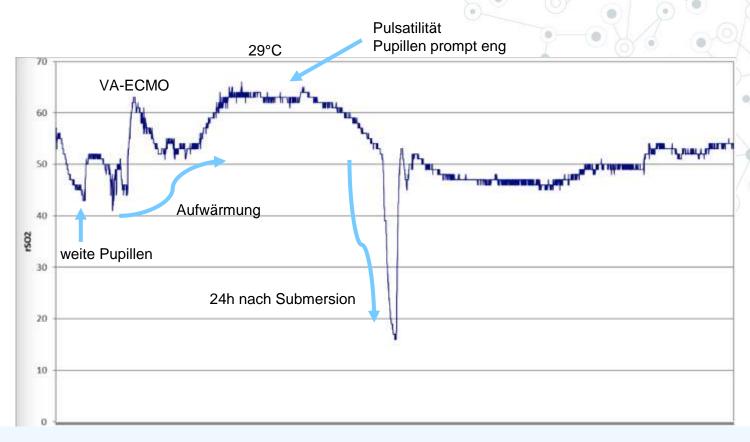


Delaying prognosis decisions until at least 72 hours after return to normal temperature Using aEEG for prediction after resuscitation





Cerebral Oxygenation, MAP and cerebral autoregulation


Greater burden of MAP below NIRSderived MAPopt - 5 during the first 24 h after cardiac arrest was associated with unfavorable outcomes.

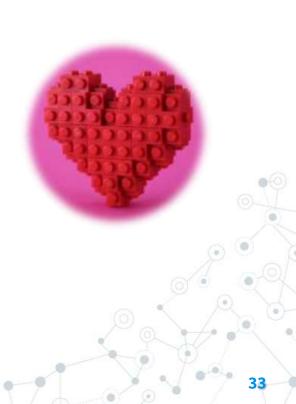
### Child 1.5 yr

4.30p: "Child is missing" Drowning in nearby stream 5.15p: child is found (submersion time?) 5.35p: CPR -> transport to hospital asystoly, 20-24°C 7.30p: arrival in PICU with ongoing CPR Dilated, non-reactive pupils ECPR with 24°C: VA-ECMO



### NIRS rSO<sub>2</sub>




After 48h: TCD: reversed flow, SSEPs negative, dilated, non-reactive pupils

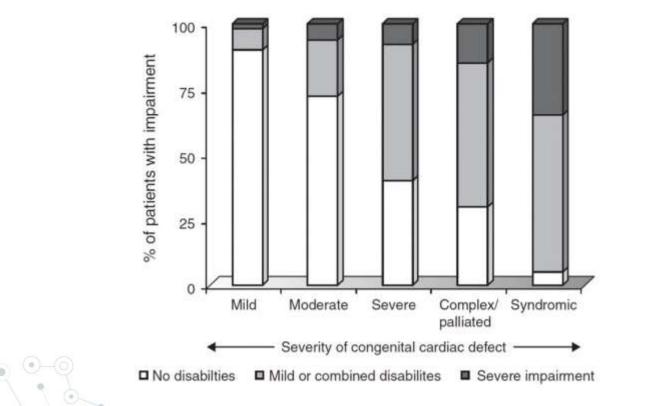
# **Post-Resuscitation**

- Detect seizures
- Role of cerebral oxygenation?
- Prediction?

# **Cardiac Patient**

3




Brain injury common

- White matter injury
- Periventricular leukomalacia
- Stroke



Preventable?

#### Brain injury common in CHD

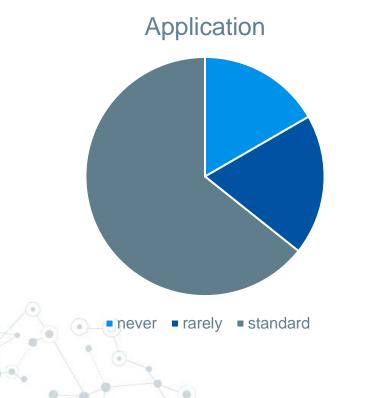


aEEG for Early Recognition of Brain Injury in Neonates with Critical CHD

- Abnormal BGP 24%
- Ictal discharges 17%

**Abnormal brain activity OR 4.0** For <u>new</u> postoperative brain injury

majority reached CNV within 24 hours


### Subclinical seizures common

### **EEG postoperatively**

- 8% electrographic seizures
- Start ~20h after surgery
- 85% only in EEG
- ◎ 62% in Status epilepticus



### NIRS use in CICU



- 37/42 see benefits in use
   19/42 would react to a change in NIRS
- Only 4 units had a protocol
- USA: 90% of units used

Hoskote 2016 Rossi 2012

# Near-Infrared Spectrometry for Monitoring Patients With Complex Congenital Heart Disease Is Here to Stay\*

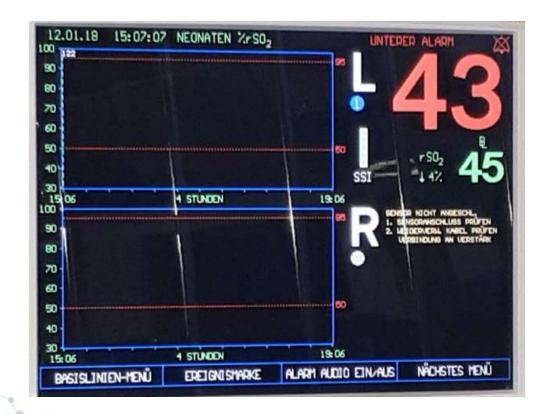
**KEY WORDS:** congenital heart disease; critical care; near-infrared spectrometry; pediatrics

Anthony F. Rossi, MD Danyal M. Khan, MD

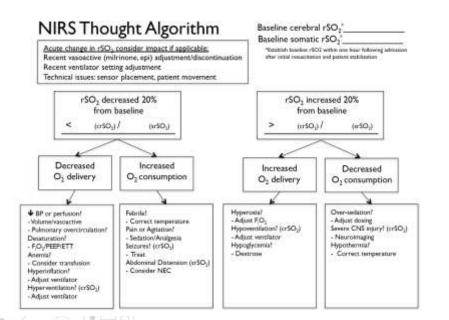
Oxygen delivery vs. Oxygen consumption
 NIRS values in children with CHD often lower
 Cerebral Oxygenation Extraction similar (cyanotic vs non-cyanotic)

Editorial PCCM 2023

Low cardiac output state (LCOS)



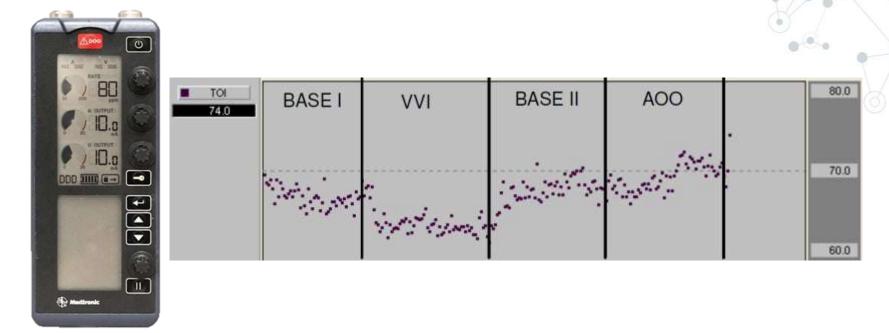

 $DO_2 \ll VO_2$ 


Delivery << Consumption

# Early detection

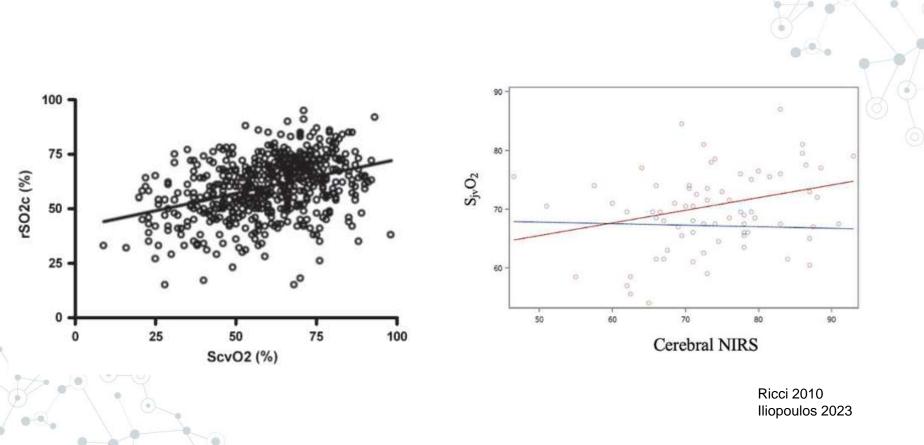
# Earlier therapy




### NIRS Algorithm to improve clinical outcomes



Before/after studyLess mortality observed


Watch out for
→ Decrease of 20%
→ Values below 30

### NIRS and cardiac pacing





Fleck 2010



### NIRS vs. central venous saturation

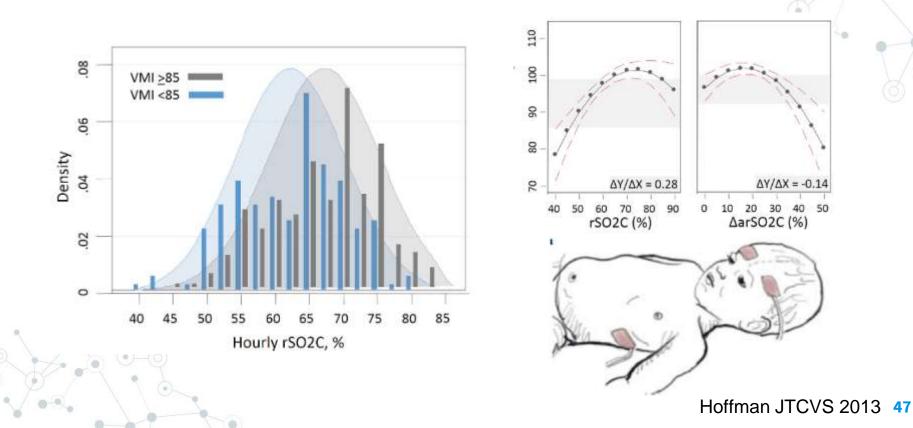
### NIRS vs. Lactate

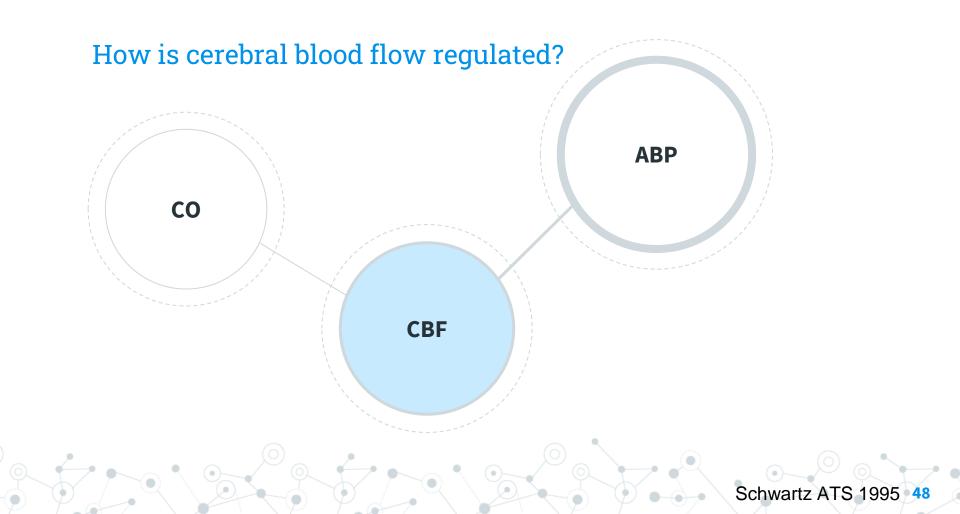
Multisite near-infrared spectroscopy predicts elevated blood lactate level in children after cardiac surgery

- Cerebral rSO(2) had the strongest inverse correlation with lactate level followed by splanchnic, renal, and muscle rSO(2)
- O The correlation improved by averaging the cerebral and renal rSO(2) values
- An averaged cerebral and renal rSO(2) value <= 65% predicted a lactate level >or=3.0 mmol/L with a sensitivity of 95% and a specificity of 83%

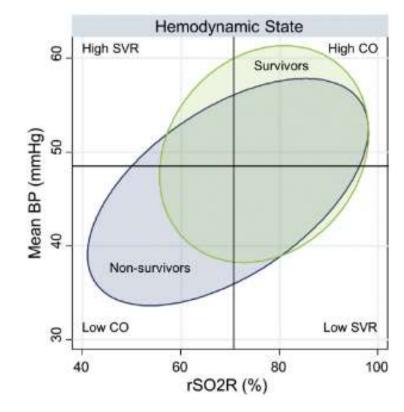
### Prediction of complications of Cardiopulmonary Bypass

Table 1 Patients' characteristics and intraoperative near-infrared spectroscopy-related values and comparison between patients with major adverse events and patients without major adverse events


| Characteristics                                     | All cases $(n = 647)$   | MAE (n = 16)            | No MAE (n=631)          | p-value |
|-----------------------------------------------------|-------------------------|-------------------------|-------------------------|---------|
| Age, month, [IQR]                                   | 76.83 [15.00, 187.75]   | 27.21 [10.25, 52.56]    | 80.83 [15.00, 189.00]   | 0.039   |
| Weight, kg [IQR]                                    | 4.03 [3.00, 6.06]       | 3.08 [2.78, 3.63]       | 4.09 [3.01, 6.13]       | 0.023   |
| Male, n (%)                                         | 376 (58.1)              | 9 ( 56.2)               | 367 (58.2)              | 1       |
| RACHS-1 [IQR]                                       | 3.00 [2.00, 3.00]       | 3.00 [3.00, 4.00]       | 3.00 [2.00, 3.00]       | 0.005   |
| Duration of operation, minute [IQR]                 | 249.00 [200.00, 316.00] | 262.50 [248.50, 320.75] | 248.00 [199.50, 316.00] | 0.316   |
| Duration of cardiopulmonary bypass,<br>minute [IQR] | 117.50 [83.00, 165.00]  | 124.00 [86.50, 174.00]  | 116.00 [83.00, 165.00]  | 0.784   |
| Pre-CPB ScO <sub>2</sub> , [IQR]                    | 58.74 [53.19, 64.90]    | 48.60 [40.13, 64.17]    | 58.89 [53.40, 64.92]    | 0.01    |
| Pre-CPB variability of ScO2, [IQR]                  | 1.76 [1.34, 2.66]       | 2.43 [1.70, 3.22]       | 1.75 [1.34, 2.64]       | 0.134   |


| Post-CPB eO2ER, [IQR]     | 0.52 [0.44, 0.62] | 0.66 [0.60, 0.78] | 0.52 [0.43, 0.61] | < 0.001 |
|---------------------------|-------------------|-------------------|-------------------|---------|
| Post-CPB Lac,mmol/L [IQR] | 2.40 [1.78, 3.90] | 2.80 [2.35, 3.45] | 2.33 [1.74, 3.95] | 0.07    |

MAE major adverse event, IQR interquartile range, RACHS-1 Risk-Adjusted Classification for Congenital Heart Surgery Version 1, CPB cardiopulmonary bypass, ScO<sub>2</sub> regional cerebral oxygen saturation, ScO<sub>2</sub> regional cerebral oxygen saturation, eO<sub>2</sub>ER estimated oxygen extraction ratio, Lac<sub>max</sub> maximum serum lactate level


Kimura 2023

### NIRS in CHD and childhood neurodevelopmental outcome





# Postoperative Cerebral and Somatic NIRS and Outcome in HLHS

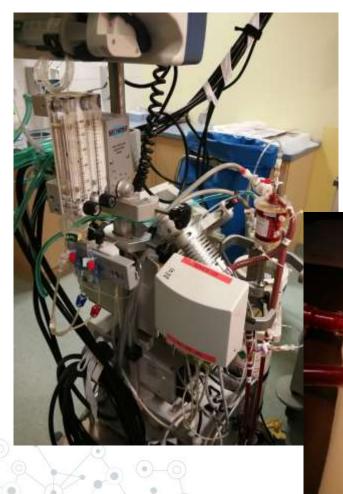


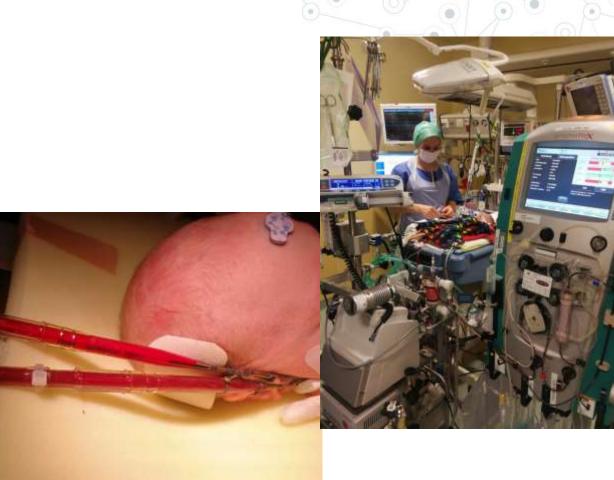
Hoffmann ATS 2017

# Budapent Marbit

### Status Quo – Monitoring Practice

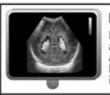
| Modality  | Pre     | Intra | Post-OP |
|-----------|---------|-------|---------|
| NIRS      | 64%     | 80%   | 72%     |
| aEEG      |         |       | 32%     |
| cEEG      |         |       | 12%     |
| CUS       | 96%     |       | 84%     |
| MRI       | 72% (*) |       | 44% (*) |
| Follow-Up |         |       | 40%     |


(\*) In clinical symptomatic cases


# **Cardiac Patients**

- Emerging
- Seizure detection
- Ideal Blood pressure? DO2 vs. VO2?
- Prediction?

# **Patient on ECMO**








# ELSO Recommendations for Neuromonitoring on ECMO

#### Recommended



#### HUS

HUS should be obtained pre and after ECMO initiation. and considered daily for 3-5 days if initial HUS is abnormal or in high-risk infants with open fontanelle. HUS should be performed as needed if clinical indication, followed by series of HUS as required.

#### Continuous EEG

cEEG monitoring can be considered within 12-24 hours after ECMO cannulation for at least 24-48 hours. Consider prolonged cEEG (at least 24 hours) if seizures/interictal abnormalities detected (intermittent EEG in resource limited settings).

# 60

#### Cerebral rSO<sub>2</sub>

Consider continuous rSO2 monitoring (frontal probes) in all patients on ECMO to follow trends in cerebral tissue oxygenation. A decline >20% from baseline can be associated with neurological 47 injury and may warrant further workup.

#### Head CT

Head CT should be obtained in infants and children on ECMO if there is a clinical concern of an acute neurological insult or if abnormal findings are notices on other neuromonitoring modalities such as head ultrasound or cerebral oximetry.

### GFAP S-100B NSE

#### limited in patients on ECMO support and is not recommended for routine neuromonitoring.

Optional

SSEP

#### TCD

Cerebral Blood Flow Velocities (CBFV) and pulsatility index (PI) measurement through TCD ultrasound may detect neurological injuries, but, to date, evidence on ECMO patients is limited, and is not recommended for routine monitoring.



#### Brain Injury Biomarkers

Plasma brain injury markers are under investigation to detect neurological injuries on ECMO, but currently are not rapidly available, and are not recommended for routine monitoring.

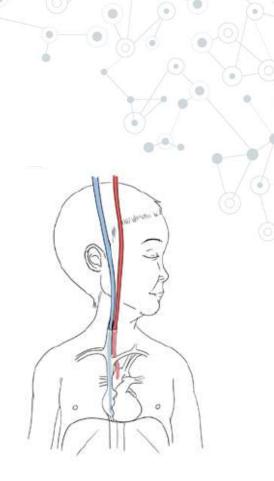
Evidence on role of Somatosensory Evoked

Potential to detect neurological injuries is

#### Pupillometry

Pupillometry may help with early neuroprognostication, however limited studies are available, and is not recommended for routine monitoring on ECMO.

# Neuromonitoring on ECMO


| Modality             | Total | Pediatric Centers |
|----------------------|-------|-------------------|
| Intermittent EEG     | 39%   | 35%               |
| Continuous EEG       | 14%   | 10%               |
| aEEG                 | 17%   | 48%               |
| Cranial Ultrasound   | 37%   | 73%               |
| Transcranial Doppler | 29%   | 28%               |
| NIRS                 | 66%   | 80%               |
| Evoked potentials    | 15%   | 8%                |
| Plasma biomarkers    | 25%   | 8%                |
| Carotid Doppler      | 6%    | 3%                |
| Routine Neuroimaging | 54%   | 77%               |

Acute desaturation on ECMO association with poor outcome

Any cerebral desaturation aOR 4
 Any rScO2 decline > 20% from baseline aOR 3.9
 Mean rScO2 < 70% aOR 5.6</li>
 Diagnostic performance as predictors poor

Prognostication on ECMO with NIRS

- 34 infants < 3 Mo</li>
  Mortality 50%, Brain Injury 20%
  NIRS-Values
  - Survivors vs Non-survivors
  - R: 69 vs 54 L: 67 vs 52



Electroencephalography with ECMO

- Continuous EEG monitoring first 24-48h
- Seizure detection 18-23% of children
  - 56-83% subclinical seizures
  - 30-50% status epilepticus
  - => assoc with poor outcome

# **ECMO Patients**

- Established
- Seizure detection
- Acute problems
- Prediction?



SUMMER

# **Post-Traumatic Patient**

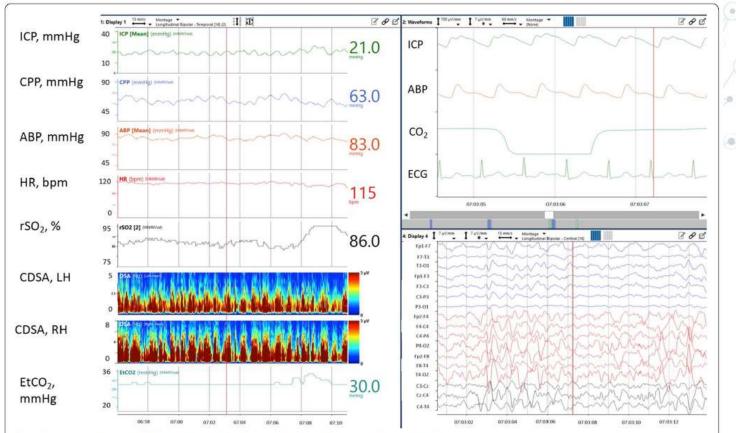
Let's start with the first set of slides

5

# Traumatic Brain injury / TBI



# Wide range of modalities


- automated pupillometry
- optic nerve sheath diameter
- NIRS
- transcranial Doppler
- cEEG
- Intracranial pressure (ICP)
- PbtO2 (regional brain tissue oxygen tension)
- cerebral microdialysis
- intracranial EEG
- laser doppler flowmetry
  - thermal diffusion flowmetry



# Neuromonitoring

| CEEG                       | Seizures, Background Electrical activity | Noninvasive, continuous<br>Quantitative and qualitative assess-<br>ment<br>Can help with prognosis, depth of<br>encephalopathy | Resource intensive<br>Sedation can affect interpretation                                                                      |
|----------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Near-Infrared spectroscopy | Regional cerebral oxygenation            | Noninvasive<br>CA indices                                                                                                      | Poor correlation in presence of hema-<br>toma/bleeding<br>Limited spatial resolution<br>Interference from extracranial tissue |

Agrawal Neurocrit Care 2023 63



**Fig. 1** A 13-year-old female patient with traumatic brain injury undergoes multimodality neurologic monitoring. Increases in ICP are associated with periodic bursts of delta activity, maximal over the right hemisphere. Subsequent neuroimaging demonstrates worsened left hemispheric cerebral edema with midline shift, and the patient undergoes a left hemispheric decompressive craniectomy. *ABP* arterial blood pressure, *CO*<sub>2</sub> carbon dioxide, *CPP* cerebral perfusion pressure, *CSDA* color dense spectral array, *ECG* electrocardiogram, *ETCO*<sub>2</sub> end-tidal carbon dioxide, *HR* heart rate, *ICP* intracranial pressure, *LH* left hemisphere, *RH* right hemisphere, *rSO*<sub>2</sub> cerebral regional oximetry. Credit to Brian Appavu, MD

-0

# Considerations for implementation of a pediatric multimodal neuromonitoring program

#### Identify key stakeholders

Identify system to be used (kiosk vs. distributed)

Identify planned monitoring devices and ensure compatibility with multi-modal neuromonitoring system.

Determine mechanism for data transfer, data storage, and interface with EMR

- Identify patient populations to be monitored
- Identify method for bedside and remote review
- Identify composition of multi-modal neuromonitoring clinical team
- Determine process for multi-disciplinary review and discussion of data

Determine standardized process for reporting/documentation of results of multimodal monitoring

Develop patient care/management protocols for multimodal neuromonitoring

Create process for equipment care, setup, and connection when patient identified

Create process for cleaning and preparation of multimodal system for next patient if kiosk monitor is used Determine plan for education of nurses and bedside clinicians

# **Post-traumatic**

- ICP Standard of care
- Seizure detection
- NIRS: additional value?



WITTING

### Summary

|                   | cEEG | aEEG | NIRS |  |
|-------------------|------|------|------|--|
| Resuscitation     |      |      |      |  |
| Post-Resus        |      |      |      |  |
| Cardiac Surgical  |      |      |      |  |
| ЕСМО              |      |      |      |  |
| Post-Trauma       |      |      |      |  |
| Seizure detection |      |      |      |  |

Seizure detection



Plante SemNeurol 2024 67

### Summary 2

# Electrophysiology

### NIRS

| CEEG | Pros: noninvasive, continuous,<br>focal and global assessment<br>Cons: resource-intensive,<br>retrospective interpretation<br>(diagnosis delay), affected by<br>sedation, prone to artifacts                                                    | ACNS 2021 guidelines for<br>recording and reporting<br>should be used <sup>154</sup> | NIRS | Pro: noninvasive, continuous,<br>easy and quick to use, small and<br>portable<br>Cons: interference from<br>noncerebral tissue (scalp<br>edema, skin pigmentation,<br>hematomas, light), low spatial<br>resolution (frontal region),<br>proprietary algorithms | Decline >20% from<br>baseline<br>crSO <sub>2</sub> <50% <sup>165,166</sup><br>Left-to-right asymmetry<br>>10%<br>No absolute normal values<br>Trends are more useful |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| qEEG | Pros: utilizes existing<br>equipment, brief training,<br>bedside real-time analysis,<br>noninvasive, continuous<br>Cons: limited pediatric data,<br>lower sensitivity/specificity than<br>cEEG for seizure (requires<br>confirmation with cEEG) | Amplitude EEG (aEEG)<br>Suppression ratio<br>Alpha-delta ratio<br>Asymmetry index    |      | proprietary againment                                                                                                                                                                                                                                          |                                                                                                                                                                      |



# **Thanks!**

# Any questions?

You can find me at: @fracardo.bsky.social & francesco.cardona@muv.ac.at